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The scaling properties of three nontrivial one-dimensional avalanche models are analyzed. The first
two of them are the local limited model with one open, one closed, and with periodic boundary condi-
tions, respectively. A theory for the scaling properties of these models based on the existence of two fun-
damental length scales, which diverge in the thermodynamic limit, is developed. The third model stud-
ied is a trapless version of the nonperiodic local limited model. We find that it is scale invariant. Our
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theoretical predictions are compared with extensive computer simulations in all three cases.

PACS number(s): 05.40.+j, 02.50. —r, 64.60.—1i

I. INTRODUCTION

A class of recently studied sandpile models [1], al-
though not representative of real sand [2], are useful sys-
tems for studying the statistical mechanics of nonequili-
brium transport processes. They are specified by adding
on ‘“grains” of sand in a random fashion and deciding
what happens after each addition by using very simple
rules of evolution. Their transport properties are remin-
iscent of nonequilibrium fluids, but they have an obvious
advantage of not being governed by the Liouville equa-
tion, which is nonsoluble even for the simplest cases.

Cellular-automaton sandpile models were introduced
in the work of Bak, Tang, and Weisenfeld [3,4], who sug-
gested that the pile would adjust its slope to a critical
value in which there would be a wide range of avalanche
sizes. They suggested that such qualitatively similar be-
havior would occur in a wide variety of systems and
called it “self-organized criticality.” The aim of this pa-
per is to analyze in some detail a number of related non-
trivial sandpile models that exhibit rather unusual statis-
tical mechanics, and to explore further the similarity of
their statistical properties to those of nonequilibrium
fluids.

The behavior of such models is very different depend-
ing on whether the rules of evolution are based on the ab-
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solute heights of the piles or whether they depend on the
local slopes. In absolute height models, grains of sand
are added one at a time at random locations on the lat-
tice. When the height at a site exceeds a threshold value,
a certain number of grains fall onto the site’s nearest
neighbors. This in turn makes some of the neighbors un-
stable, which then shed grains to their neighbors, thus
setting off an avalanche. This process is repeated until
the entire sandpile is stable and then the addition process
starts again. Quantities of interest are the nature of the
recurrent configurations and their number as a function
of the system size, the distribution of avalanches, etc. In
a series of elegant papers, Dhar [5,6] showed that a large
class of absolute height models were Abelian, i.e., the ad-
dition processes commuted. This property leads to
a particularly simple equiprobable partitioning in
configuration space and allowed an exact solution of
these models.

The models studied here do not have the Abelian prop-
erty. The rules of evolution depend on the local slope
rather than the local height. The main model that we ex-
plore was introduced and first studied in Ref. [1] (hereaf-
ter referred to as local limited or LL models). In this
model, as soon as the local slope gets large enough, a local
slide (from left to right) is started. This slide can add ex-
tra material downhill and thus trigger further events
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below it. The displacement of material can also under-
mine the sand above it, which then can also start in
motion causing backavalanches. The extent of the back-
avalanches is restricted by sites that possess zero or nega-
tive local slope (trapping sites) and by the left-hand
boundary (an infinite wall). The backavalanches (which
physically reflect the property that the sand at the bot-
tom of the pile supports the sand at the top) are a feature
introduced by considering local slopes rather than abso-
lute heights.

We begin this paper by discussing the LL model and
find that it is difficult to solve exactly because of two non-
related features. The first is the existence of an average
flux maintained by the boundary conditions, which
makes the model not translationally invariant. The
second difficulty stems from the nontrivial distribution of
trapping sites, which in turn makes the distribution of
avalanches difficult to calculate.

To guide us in our understanding of the scaling proper-
ties of the LL model we introduce two related models,
each having only one of the two difficulties mentioned
above. The first is the PLL (periodic local limited) model
which is governed by the same rules as the LL model, ex-
cept that the boundary conditions are now periodic. This
model still has a nontrivial distribution of traps but is
translationally invariant. The second is the LLL model
(local limited, limited to no traps), which has rules analo-
gous to those of the LL model, but disallows the forma-
tion of traps. Both simplified models are amenable to
analyses whose results guide us in our understanding of
the LL model.

In Sec. II, after reminding the reader of the rules of the
LL model, we analyze its set of recurrent configurations.
These are the configurations that are revisited during the
course of time, and they define the space on which statis-
tical mechanics is done in this model. It will be shown
that the calculation of the number of recurrent
configurations as a function of the system size maps onto
classical problems in mathematics, like the Euler problem
of polygon division and the Catalan problem, so one can
exactly calculate the number of recurrent configurations
in a system of size L. The probability to see a
configuration in the course of time is uniquely determined
by a Markov matrix of transitions probabilities. It is
shown that, in contradistinction to the so-called Abelian
models [5,6], here the probabilities of the various
configurations are widely different, adding to the com-
plexity and the interest of this class of models. Having
found that, we turn then to a symbolic description of the
configurations in terms of height differences, or local
slopes. The description at each site has two parts, a
binary spin variable which has trivial statistical proper-
ties, and the number of traps which has nontrivial statis-
tics.

In Sec. III we shall present the PLL model. By repeat-
ing the sandpile periodically, we regain translational in-
variance, and turn the model to an essentially soluble
problem. The main asset of this simplified model is that
it allows us to understand the role of traps in limiting the
extent of the correlations in these models. We develop a
scaling theory which is based on the existence of two fun-
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damental length scales. The first is the mean distance be-
tween trapping sites which scales like L!/3. The second
is a coherence length &, which scales like L2/3. The pre-
dictions of the theory are checked against extensive nu-
merical simulations.

In Sec. IV we use the results of the PLL model to con-
struct a scaling theory of the LL model. To connect the
results of the PLL model to the LL model, we shall argue
that the PLL model is a microcanonical version of the
canonical LL model. The scaling theory is tested against
numerical simulations in Sec. V. It appears that our un-
derstanding of this model is in good (but not perfect)
agreement with the simulations.

In Sec. VI we will present the LLL model. We solve
the model in the mean-field Reynolds approximation,
which we think captures much of the essence of the exact
solution. It will become clear, in the course of the solu-
tion of this model, that the problem is truly very similar
to the nonequilibrium behavior of fluids. We shall find
that the calculation is identical in form to the hierarchi-
cal calculation in terms of correlation functions in fluid
mechanics. A diffusion equation appears naturally in
terms of slope variables, and its solution calls for approxi-
mating higher-order correlation functions in terms of
products of lower-order ones, exactly like the closure ap-
proximation in fluid statistical mechanics. Due to the
lack of traps, the correlation in the LLL model extend
throughout the system. The power-law decay of the
correlations, which is predicted by the theory, is tested
and confirmed by numerical solutions.

Section VII offers a summary and a discussion. In this
discussion we address the fundamental question of why
long correlations build up in these systems. We will pro-
pose that the mechanism for creating the long correla-
tions in these models is similar to the one operating in
other nonequilibrium stationary states which support a
nonzero average flux such as heat conducting fluids.

II. THE LOCAL LIMITED MODEL
A. Definition of the model

Consider a one-dimensional lattice of L sites, on which
grains of ‘“‘sand” are distributed one at a time with equal
landing probability. Let the number of grains accumulat-
ed on the jth site be denoted by H;. The rules of the LL
model are that grains are free to accumulate as long as

H;—H; <2 VY j=12,...,L . (1)

When Egq. (1) is not obeyed, two grains fall from site j
to site j—1. Note that the falling process is inherently
asymmetric: grains fall only toward lower j. The process
will continue until Eq. (1) is obeyed at all sites
j=12,...,L. All unstable sites are updated simultane-
ously. Then a new grain is added randomly and the pro-
cess continues. At one end of the pile there is a wall and
at the other end there is an abyss. The boundary condi-
tions on the sites O (abyss) and L + 1 (wall) are therefore

These rules define the model completely.
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B. Slides, avalanches, and the local slopes

In terms of observed behavior, an interesting quantity
to measure is the number of grains that cascade down the
slope or fall off the pile after every addition of a single
grain. By working in new variables based on local slopes
rather than absolute heights, we can predict these quanti-
ties immediately from knowledge of the configuration and
where the sand was added.

Define the variables S; (local slopes) and €; by

S;=H;,—H; ., (3)

€=S;—1. 4)
The variable €; can take on the values 1,0,—1,
—2,...,—2j+1. Sites with negative values of ¢; are
termed hereafter as trapping sites (for reasons that will
become clear in the next paragraph).

The rules of sandpile evolution are then as follows.

(R1) If the added grain hits a site with €; =0, it simply
sits there, and €; increases by 1, whereas €; | decreases
by 1.

(R2) If the grain hits a site with €;=1, two grains fall
to the right. The value of €; decreases by 1, whereas €;
increases by 2. The pair of grains will continue to slide
until they reach the first site on the right (say k) for
which €; <0, at which point they come to a stop. This is
why sites with negative values of €; are called trapping
sites. If k does not correspond to the abyss, then €, in-
creases by 2 and €, ,; decreases by 2. If no such site is
encountered, then the grains will fall into the abyss.

(R3) If a grain is added on a site with €;=1 and if
€;+1=1, then there will be a displacement of sand that
includes the entire layer (two grains thick) between the
site that was hit and the first trapping site (say m) to the
left of that site (as shown in Fig. 1). This layer will slide
down until it hits the first trapping site (k) on the right.
The net changes will be

€,=€;—1, €,,=€;4,—1, €,=€,+2,
€ =612, € iijomT€kt+(i-m 2 -

Should there be no trapping site on the right of the added

H =

-

111
11 1 1T1] 17

(a) (b) (c)

FIG. 1. Example of how an avalanche is created. (a) The ar-
row shows a grain being added on a site with a local slope of 2
whose left neighbor also has a local slope of 2. (b) The
avalanche backpropagates until it reaches a site whose local
slope is O or negative (denoted by an arrow). The shaded region
shows the grains of sand that fall downhill as a result of this ad-
dition. (c) The sandpile after the avalanche. The entire shaded
region in (b) has fallen off the edge corresponding to an
avalanche of size 10 grains.

grain, the entire layer will fall into the abyss, correspond-
ing to an avalanche of size m —j. In particular, if
€;=¢€,=1, and if all other €; =0, then hitting with a grain
on site 1 will produce an avalanche of size 2L, which is
the largest avalanche possible.

(R4) The boundary conditions are
e=H,—1.

These rules exhaust all the different possibilities. In
particular, they imply that the model is integrable be-
tween successive additions of sand. Using them, we have
been able to write rather efficient codes for simulating the
transport behavior of this model. The above rules also
reveal how traps are destroyed or created. In particular
the addition of sand at a site will increase the slope of
that site by one while reducing the slope of its left neigh-
bor by the same amount. Similarly through an
avalanche, the site at which the head of the avalanche
comes to rest has its slope increased by 2, while the site
where the avalanche started as well as the site which is
the left neighbor to the tail of the avalanche have their
slopes reduced by 2. These are the only ways traps are
created or destroyed. It is not hard to convince oneself
that the occurrence of deep traps (slope less than —1) is
unlikely in this system.

€L+1= 1,

C. Recurrent and nonrecurrent configurations

Not all of the stable configurations are recurrent in the
dynamics. First, consider the number of different
configurations that the sandpile can possess. For exam-
ple consider a sandpile consisting of a single site L =1.
Figure 2(a) is the Markov diagram corresponding to such
a sandpile. The only current, stable values of H, are 1
and 2, whereas O is transient, and 3 is unstable. Figure
2(b) shows that for L =2 there are five recurrent
configurations, which denoted as H,H take the values
21, 31, 22, 32, and 42. It is easy to see that the maximum
height of a site at a distance x from the abyss, in a stable
configuration of the sandpile is 2x. This is because if the
height difference between any two successive sites was
greater than 2, that site would be unstable. Thus the lo-
cal slope at each site can never be greater than 2, and the
maximum average slope (averaged over the entire sand-
pile) is also 2. It is also not hard to convince oneself that
the minimum slope for a recurrent configuration is one,
and that a configuration is recurrent if each site is stable
and

Hz=>j. (5)

A simple device for finding all the recurrent
configurations for an arbitrary value of L is presented as
a tree in Fig. 3. The branches are labeled by numbers,
which for each group of branches starts with L and in-
creases consecutively, reaching 2L only in the last group.
The recurrent configurations for a system of size L are
the values of {H;}, which are obtained by reading the la-
bels of the branches from top to bottom. The number of
recurrent configurations is the number of branches on the
Lth level of construction.

The number of recurrent states as a function of L
forms a sequence of numbers (2,5,14,42,132,... for
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FIG. 2. Markov diagrams for (a) a single site and (b) a two
site sandpile showing all the possible transitions of various
configurations when a grain of sand is randomly added. The
numbers in the middle of the circles are the heights at each site.
Double circles denote recurrent configurations while single cir-
cles denote nonrecurrent ones.

L=1,2,3,4,5,...) called the Catalan numbers (see Ap-
pendix A). This sequence was first generated by Euler in
1751 as the solution of the problem of how many ways
can one divide a convex polygon into triangles by con-
necting vertices. These numbers are given by the formula

1 2n
n+1 n

C(n)= , n=0. (6)

For our case the number of recurrent states N; is given

FIG. 3.

Catalan tree: a compact hierarchical way to
enumerate all the recurrent states of the sandpile. Each level of
the tree represents an additional site being added. The numbers
are the heights at each site. The construction of this tree is ex-
plained in the text.
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by N; =C, —(L +1)- One can show that for large L, N,
goes as 4-/L3/%2, Now that we know the number of re-
current configurations we should discuss the probability
of their occurrence.

D. The Markov matrix and the invariant probabilities

Upon the addition of one grain of sand a process of
slides and avalanches can be triggered; however, the end
result is simply a transition from one recurrent state
{H;} to another recurrent configuration {H;}. Thus the
dynamics can be fully described by a matrix of rank
N; XN, with transition probabilities whose values are ei-
ther zero or 1/L. For example, for L =1 the Markov
matrix is

01

Lol %)

where the rows and columns correspond to the recurrent
configurations to heights 1 and 2. For L =2 the Markov
matrix is

03303
10010
10000}, (8)
03303
000 1Llo

where the rows and columns correspond to the recurrent
configurations 21,31,22,32.42. In these matrices, the
columns always sum up to unity. Accordingly there ex-
ists a left eigenvector of eigenvalue 1, which is the unit
vector. The right eigenvector of eigenvalue 1 is the sta-
tionary solution of the Markov chain, and its entries are
the invariant probabilities for the recurrent
configurations. Finding a solution for this eigenvector
for an arbitrary L is equivalent to solving the LL model
exactly.

The probabilities of some configurations can be found
exactly, using the following thinking. Consider an arbi-
trary configuration. Assign an even (e) or odd (o) parity
to each site depending on whether the height at each site
is even or odd. The addition of a grain at any site will
simply flip the parity of that site. Note that since
avalanches always consist of pairs of grains, they do not
change the parity of any site. Thus we can define a set of
sum rules based on the parity at all sites in a
configuration. For example, consider a two-site sandpile
which, as we have discussed earlier, consists of five re-
current states. Of these three of them 21, 31, and 32 have
unique parity states eo, oo, and oe, respectively. Howev-
er, the configurations 22 and 42 have identical parity
configurations (ee). Defining P(H,H ) as the probability
of the configuration H,H,; we get the following equa-
tions:

P(21)=P(31)=P(32)=1, (9)

P(22)+P(42)=1 . (10)
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Now the number of unique parity configurations in-
creases as 2L, while the number of recurrent states in-
creases asymptotically as 4°/L3/2. Thus this approach
only provides partial information about the probabilities
of various configurations and is increasingly less useful as
L gets larger.

Since the number of configurations grows exponential-
ly with system size, and since probabilities of the oc-
currence of these configurations is nontrivial, exact
enumerations rapidly become impossible. We have not
been able to find an exact solution to this problem. How-
ever, we will now proceed to develop a scaling theory,
based on very general arguments, that captures the scal-
ing behavior of these sandpiles in the thermodynamic
limit.

E. Dynamics of the LL model

Let us think about the dynamics of the LL model as a
two-step process. In the first part, the addition part, a
grain of sand is added to a randomly chosen site. We
visualize that this first step takes a time interval equal to
4. In symbols, we have

H;(t+5)=H;(t)+n(?) (addition step) , (11

where 7,(¢) is a random variable which describes the ad-
dition process. It is defined so that

__ |1 if sand is added on j
=10 otherwise . (12)
The second step comes after the sand is added. We call
this the avalanche step. Whenever the local slope S; is
greater than 2, sand will fall from site j to reappear on
the downhill site j —1. This process will continue until
there are no remaining slopes greater than 2, whereupon
the process will terminate. The process can be summa-
rized as

(avalanche step) .  (13)

Here N; is the number of times two grains fall downhill
through the site j. Remember that the addition process
always changes H; or S; by an odd number while the
slide process changes these quantities by even numbers.
We can learn a lot about the qualitative nature of the
probabilities involved if we keep this concept clearly in
mind. (Indeed, we used this observation to compute the
probabilities of configurations with a unique parity
configuration in Sec. II D). With this end in view define

(1+0;)
S =14+———-2M, .

; 5 ; (14)

Here o is a “spin variable” which takes on values *1
and M; is a variable which describes the trap depth
which takes on values O (when there is no trap), 1 (corre-
sponding to slopes of 0 and — 1), and occasionally higher
integer values (corresponding to even deeper traps which

for this model occur very rarely). The time development

of the “spin” variable o is quite simple indeed. The net
effect of the addition is
—o;(2) if grain is added on j or j —1

o0 ;(t) otherwise .

o;(t+1)= (15)
The dynamics of the M s is more involved, but can be
simply derived from the rules for updating € that were
discussed earlier.

Notice that most of the processes that go on respect a
partial conservation law for the total slope

L
Sr=35;. (16)

j=1

The average slope of the entire sandpile S is also the ab-
solute height of the leftmost site of the sandpile divided
by the length of the sandpile L. The height of the left-
most site changes only when either a grain of sand is add-
ed at j=L or when a backavalanche reaches j=L. All
other processes exactly conserve Sp. This conservation
law can be restated as an equation of motion for M; or S
during the slide process. From Egs. (1) and (13) during
the slide process

2
=—2N;+N;4+N;_, . (D

From this point of view, the boundary condition at the
bottom end is that

No=N,, (18)
while that at the wall is
N; ,=0. (19)

There is another crucial invariance. Notice that, al-
though the addition process does change the o,’s, the
avalanche certainly does not. Moreover, the avalanche is
totally unaffected by the values of these spin-parity vari-
ables. As a result, the o’s are uncorrelated and random-
ly distributed onto the values 1. This statement is
rigorous. Less rigorously, one might say that it is reason-
able to expect only a weak correlation between nearby

values of Mj and 0;.

III. THE PERIODIC LOCAL LIMITED MODEL

In the periodic model, each site is just the same as each
other site, so that special conditions such as Egs. (18) and
(19) are omitted. Instead, we require periodicity for S, M,
and o, e.g., that

S; L=S; . (20)

The site at which the avalanche will come to a stop is
found by moving away from the site at which sand was
added (in a clockwise direction) and continuing until the
first trap is encountered, using the periodicity if neces-
sary. There is only one danger, which arises if a trap-free
configuration is reached. Then an addition can cause
grains to go around the sandpile endlessly. It is easy to
devise a set of rules to deal with such a situation. Howev-
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er, as a precaution to avoid biasing the natural dynamics
of the sandpile in any way, in all our simulations we sim-
ply choose L large enough (i.e., start with enough traps)
so that this situation is not reached within our simulation
time.

The periodic model defined in this way has properties
which are essentially similar to those of the LL model, so
long as no processes extend over the entire length of the
system. Nothing like this will happen as long as there are
many traps in the system. In the LL model, all of the S;’s
are uncorrelated and randomly distributed. The periodic
boundary conditions cause only L —1 of the spins to be
independently distributed. This correction, however, can
be neglected in the thermodynamic limit, and so in our
arguments we assume that all of the S;’s are uncorrelated
and randomly distributed. Moreover, the conservation
law on S; is now exactly satisfied. The cost of the
translational invariance in the PLL model is that, in addi-
tion to specifying L, now one must also specify the slope
of the system. From Eq. (14), we see that

3 or
=L+ oM 21
Sy 2L 5 T 21

where the total spin is

L
or= 0. (22)
j=1
Notice that for My=0 =0, S7=3L /2. It will turn out
to be convenient to rewrite S; in the form

Sp=2L—2eL . (23)

For the PLL model, the value of € is determined by our
choice of Sy.

A. Solution of the periodic model

The conservation law for S in the periodic model will
enable us to solve for the probabilities of the different
values of M. Define the probability that the total trap
number takes on a certain value, say M, in a system of
size L as pp(M,L). This probability will certainly de-
pend upon €. Since S is conserved we can combine Egs.
(21) and (23) to read

or=4Mp—€L) . (24)
Since the o;’s fluctuate independently of one another, we
know all about the statistical properties of variance of
or. From Eq. (24), we then know all about the statistical
properties of M. Since each spin has average zero, the
average trap number at a given site is

© ppr(M,L)M

73 =(M;)=¢. (25)

M=1

We are interested in the case of small € so that Eq. (25)
can be interpreted as the statement that € is the small
probability that there will be a trap present at a site j.

The existence of a nonzero € in turn implies the existence
of a typical length scale A,
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A=—, (26)

which is the mean distance between traps. The statistical
independence of the different o ;’s means that we can cal-
culate the variance of the total trap number from Eq. (24)
as

L

S pr(M,L)M?*={((M;—€eL)*)=-"-. 27)
M=1 16

The entire probability distribution of both o and M
can also be found quite easily. The independence of the
o0 ;’s implies that the distribution for o has a binomial
character: For large L, the binomial distribution may be
replaced by a Gaussian distribution. Since for the PLL
model, the distributions of o and M, differ only by a
constant, we know that the distribution of M, is also
Gaussian. Here the factors 8/L arise because the vari-
ance of (0% ) is just L. Thus we find

_ exp[—8(M —eL)?*/L]

pr(M,L)= e . (28)

Equation (28) is the central result of this section. It im-
plies that the probability of observing values of the total
trap number which are zero (or below) are of the order

pr(0,L)=exp[ —8(—eL)?/L] . (29)

The exponential factor is the one which matters. The
statement is that if

€L
In(L) ’

then there is an exponentially small probability that the
system will have no traps. When the inequality (30) is
sufficiently satisfied, the system will always contain many
traps. If this model were a usual statistical-mechanical
system, we would further expect that there was some
coherence length &, which describes the typical size of
these regions, and that over distances much greater than
&, one could apply local equilibrium arguments to get es-
timates of probabilities. In particular, one could estimate
the probability of finding a region of size x with a small
value of M(x)=3{L*M; by applying the analysis which
led to Eq. (28). The result is

(30)

pr(M,x)~exp[ —8(M —ex)*/x] . (31)

Notice that we have defined p;(M,x) to be the probabili-
ty to see the total trap number M in a region of size x.
Notice also that we have replaced an equality by an order
of magnitude statement since the argument is unlikely to
be sufficiently good to get the prefactor correctly. If we
specialize to M =0, we find for the PLL model

pr(0,x)~exp(—8e*x) for L >x>>EV 7L /8 . (32)

Equation (32) implies that there exists a second typical
scale in this problem, §, which satisfies

E~e 2. (33)

This result may be in error by factors which behave as
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powers of In(L). However, it should be clear that for
x >>§ there is only an exponentially small probability to
see no trap.

We now turn to the consideration of a smaller subsys-
tem of the full system, and will try to introduce the
effects of diffusion in an order of magnitude calculation.
Assume an isolated system of size x, stretching from j to
Jj+x. Corresponding to Eq. (21), but now over just the
region of size x, the following relation holds:

3 or(x)
ST(x)=3x+ —2My(x), (34)

2
where the totals now represent sums over a region of size
x. Start from an initial condition for which

Mp(x)~ex (35)

and o is roughly zero, where the region is large enough
so that M is much larger than one, i.e.,

x>>e . (36)

Consider a time interval ¢, which obeys 1 <<t <<L. In
this interval of order xt /L spins, o ; will have flipped sign
on the region. Correspondingly by the central limit
theorem, the change in o  will be of the order

S0 r(x)~V'xt /L . (37)

If one looks at a time interval larger than L, some of the
spins that have flipped will start flipping back so that the
fluctuations in o will no longer grow, but remain fixed
at the value of order V'x. As o(x) changes, 4M;(x)
will change by the same amount, providing we neglect
motion of traps in and out of the region. Therefore the
time that it will take for a fluctuation to reduce the num-
ber of traps to zero will be t*(x), which is given by the
time necessary for the fluctuation in o r(x) to be of the
order €x, i.e.,

xt*(x)/L ~(ex)? . (38)

This estimate will be used in the context of the diffusion
equation

9,5;~20,;0;n; . (39)

Here s; and n; are coarse-grained versions of the slope S,
and the local flip number n; over a region much larger
than the coherence length. Carlson, Chayes, Grannan,
and Swindle (CCGS) [7,8] argued that a diffusion equa-
tion such as Eq. (39) would be necessarily satisfied by a
coarse-grained slope and found numerical evidence for
this diffusive behavior. We can see how this equation
could arise. A coarse-grained averaging of Eq. (17) im-
plied that in a typical avalanche step
si(t+3)—=s;()=—4n;+2n;  ,+2n;_,, (40)
so that the replacement of differences with derivatives
gives Eq. (39). In deriving this estimate we have neglect-
ed changes in s; caused by the direct addition process.

J

We do this because any addition will raise one S; at the

expense of lowering the neighboring one. Thus direct ad-

ditions tend to cancel out in the coarse graining of S;.
We use the scales already defined to estimate various
quantities in Eq. (39), i.e., 9;~x "', 3, ~1/[t*(x)], s, ~¢,
and find

Ex2 X

t*(x)~z . (41)

n;

Next we estimate the number of grains that flow past
each site in the system. To do so we must first define
various probabilities and the relationship between them.

Define Q(y) to be the average number of trap-free re-
gions of size y in a system of large size L. Let p1(0,x) be
the probability that a randomly picked region of size x
will contain no traps whatsoever. Let p(y) denote the
probability that if you start out from any point j and
move towards larger values of position you will encounter
the first trap at j +y.

Notice that p(y)L is the number of times you will land
y steps to the right of the trap when one averages over all
the possible entries. There will be one such entry of each
trap-free region of size larger than y. Thus

L
WL=3 0(z). (42)

z=y

Imagine that we pick a region by first specifying a ran-
dom value of the starting point j and then walking to the
left from that point. If there are no traps which appear
as we walk over a distance x, we know that the region
will make a contribution to p(0,x ). Thus

pr(0,x)= 3 ply). (43)
y=x
Next we would like to estimate the distributions for the
drop numbers. To estimate pp(x), one notices that p(x)
is the probability that the first trap in the system will
occur at a distance x from an arbitrarily chosen point. If
one adds a grain at a distance k <x from the trap, one
will with probability + (which is the asymptotic probabili-
ty of seeing a pair of sites with €;=¢;,;=1) start an
avalanche. This will correspond to a drop number of
D =2(x —k). By this argument, one gets the drop num-
ber distribution function as

x)=1 }_‘ (44)

To estimate (N f ), notice that the drop number in any
avalanche is 2y so using Eq. (44)

L
(N;)=3 2xpp(x)= ELL p(y) . (45)
x 0

IIMh

Reversing the order of summation we get

L
(Nj)— 2 Ep(y (46)

At this point we note that the summation can be ter-
minated at y =§ with impunity since p(y) becomes ex-
ponentially small beyond this point. Thus to estimate n;
in Eq. (40) one uses
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2

nj~ 3 yfp(y) 47)
y=0

to find that Eq. (41) implies

S Lp~=. 48)

Differentiating Eq. (48) this expression with respect to x,
to find the estimate for the probability we get

p)~— if el <x SE . (49)
€X

This is the central result of this section. The condition-
al in this equation arises from the two constraints in our
calculation: first that x be large enough so that there are
usually many traps in the region of size x, and second
that x is small enough so that a sufficiently large fluctua-
tion might occur. This will require that

xSE~e 2. (50)

The other limit in the conditional in Eq. (49) is the re-
quirement that the size of the region be large compared
to the typical distance between traps. We denote this
typical distance by A, where

A=e"l. (51)

B. Predictions for the drop number

The scaling analysis of the preceding section can be
employed to estimate the drop number distribution. First
consider small values of x. Rewrite Eq. (44) as

X

1= 3 p(y)

y=0

pplx)=—1

aL (52)

We have defined A as the typical distance between
traps. As such it should represent the x value for which
the sum in Eq. (52) becomes of the order unity. As a re-
sult, when x <<A, p, must become independent of x. We
estimate

Lpp(x)~1 for 1 <<x <<A. (53)

We then use Eqgs. (44) and (49) to get the drop number
distribution in the scaling region as

LpD(x)~§ for A <<x <§ . (54)

Finally to obtain an estimate for large x, we employ Eqgs.
(43), (44), and (28) and find

LpD(x)~L(‘/_—x-(Q for £<<x <L . (55)
X

The numerical prefactor in the coherence length is
defined so as to remove all the numerical prefactors from

the exponent in Eq. (55) which then requires

E=e%/8. (56)
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IV. THE LOCAL LIMITED MODEL REVISITED

In the LL model, the slope of the sandpile is no longer
a conserved quantity. Thus Eq. (21) is no longer exact.
However, numerical simulations show that the slope dis-
tribution is a sharply peaked quantity that is a function of
the system size. The modal value of the slope obeys the
following scaling relation

(S(L))—3~e~L 173, (57)

Thus one can expect our arguments for the PLL model
to carry through to the LL model. However, in all of our
arguments one must replace the free parameter € with the
observed value of €(L).

Going back to Eq. (45), we now note that for the LL
model {(N;)=1, since (N,) simply measures the num-
ber of pairs falling off from the first site, which by conser-
vation is half the number of grains added. Apply Eq. (47)
with the evaluation of p(x)~pq(x) given by Eq. (49).
The contribution for x near the mean free path is quite
small. The main contribution occurs for x of the order of
the coherence length. We now find

£
g~ (58)

which in conjunction with Eq. (50) enables us to evaluate
€ and find

e~L ™3, (59)

CCGS found the evaluation Eq. (59) as a result of their
numerical work. This is a theoretical derivation. (A con-
densed version of this argument can be found in Ref. [9].)
The above result can also be derived using a scaling argu-
ment which we now present. Referring back to the solu-
tion of Eq. (46), which is given by Eq. (49), we notice that
one could in principle have other solutions of the form
p()=(L/EN4/y*)(E/y)P. We rule out such solutions by
requiring that $§p(y)~0(1). Then we use the fact that
€ is the average probability to see a trap at any site and
that A=1/€ defines a characteristic distance between
traps. Therefore, for 1 <x <A we get

M=

p(y)~f0xeexp(—ex)~1—1/e . (60)

y=0

Thus the probability of seeing a trap a distance greater

than A is of the order 1/e ~O(1). Noting that p(y) de-
cays exponentially for y > &, we can write

& 4L
S py)~—
y=A

1 1
—— = |~0(1). (61)
£ | ¢
Neglecting the term 1/& as small compared to 1/A we
get

% ~€ . (62)
EA

Using the relation A~¢e~ ! we end up with
£ (63)

4l
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which in conjunction with Eq. (33) enables us to evaluate
€ .

e~L~13, (64)

This immediately gives us expressions for the two funda-
mental length scales in the problem:

A~e l~L13 (65)
and
§~€~2~L +2/3 . (66)

The importance of this length scale with regard to the
drop number distribution has also been emphasized in
Ref. [10]. The drop number predictions for the PLL
model given by Egs. (53)-(55) also carry through, but
with one important difference. Unlike the PLL model, L
is no longer an irrelevant parameter but now sets the
length scales for both € and &.

Since the scaling relations all involve powers of L, the
natural variable to use is the logarithm of L. We define
multifractal like variables a and G(a), where

_ In(x)
a-——ln(L) (67)
and
1 )

In(L)

Then combining Egs. (53) and (54) with Egs. (65) and (66)
we get

G(a)=—1 for 0<a<i (69)
and
Gla)=—2%2—a for {<a<?i. (70)

In the third region Z<a <1 we expect an exponential
falloff in the probability p,(x) and thus asymptotically

Gla)=—ow for 2<a<l. (71)

V. SIMULATIONS OF THE LL AND PLL MODELS

A. Simulations of the LL model

In this section, we will compare the theoretical predic-
tions in the preceding sections with numerical evidence
obtained via computer simulations of the LL model.

For very small lattice sizes, i.e., L =1-10, one can cal-
culate the eigenfunction of the Markov matrix of transi-
tions and then compute the drop number distribution ex-
actly. Since the number of recurrent configurations
grows exponentially, for large L, it is impossible to carry
through the calculation. Thus, for L > 10 we resorted to
computer simulations. Due to the simple nature of the
dynamics (as outlined in Sec. II B), one can write very
efficient codes for updating the sandpile. In addition, one
can estimate by various arguments that the transient time
for the sandpile to reach its slope is of the order of L2.

The theory predicts a scaling behavior based on two

length scales, namely €, which defines the characteristic
distance between traps and £~e¢%, a coherence length
beyond which correlations decay exponentially. We
show here two simple ways of estimating the L depen-
dence of €. Both of them are based on the idea that the
L? sandpile has a slope distribution that is sharply
peaked and that we can use the modal slope (i.e., the peak
of the distribution) for all our scaling arguments.

Figure 4 is a log-lot plot of the deviation of the modal
slope from its asymptotic value of 1.5. The slope of this
plot [which from Eq. (23) is €] is ~0.338. This is very
close to the theoretical prediction of 1.

Similarly one can look at the modal trap number distri-
bution. Our theory predicts that deep traps are irrelevant
and that the number of traps should scale like eL ~L?2/3,
Figure S is a log-log plot of the modal number of traps
against lattice size. The slope of this plot gives us an esti-
mate for eL. Its numerical value 0.688 is in good agree-
ment with the theoretical prediction of 2.

In the LL model, for each lattice size there is a distri-
bution of slopes and trap numbers. The theory predicts a
(truncated) Gaussian distribution for the trap numbers.
Figures 6(a) and 6(b) show that this prediction is in good
agreement with the observed trap number distribution.

For purposes of computing the above modal slopes and
trap numbers, the sandpiles were updated about 10%
times. For purposes of computing the statistics of drop
numbers (avalanche sizes) we performed much larger
simulations. This is necessary as the drop number distri-
bution depends on the entire distribution of the trap
numbers and not just the modal value.

For small lattice sizes, i.e., L <256, we updated each
sandpile 10° times. Since the probabilities of the drop
numbers decrease as power laws or exponentials (depend-
ing on the scaling region) with lattice size, for lattice sizes
L >256 we employed the following trick to improve our
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FIG. 4. Log-log plot of modal slopes. The sandpile has a
sharply peaked slope distribution in time. The peak is a func-
3

tion of the system size and tends to § in the thermodynamic

limit. The theory predicts that the deviation from % decreases
as a power law in L with an exponent of % The slope of the
least-squares fit to the data points is 0.338.
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FIG. 5. Log plot of modal trap numbers. Similar to having
an L-dependent modal slope (Fig. 4), the sandpile also has an
L-dependent modal trap number. The theory predicts that the
number of traps should increase as L?/?. The slope of the least-
squares fit to the data points is 0.688.

statistics. Notice that each site can receive a grain of
sand with probability 1/L. So we computed all the drop
numbers that would have occurred if we dropped a grain
of sand at each of the different possible sites of the sand-
pile. Then we chose a single site at random and updated
the configuration. This enabled us to increase the num-
ber of events by a factor of L. For 256 <L =<50000 we
discarded the first L? transients and then gathered statis-
tics while updating the sandpile 10'° times. These
(256 <L =50000) are our most extensive simulations and
are several orders of magnitude more extensive than pre-
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number of traps

FIG. 6. Probability distribution of traps. The theory predicts
that the fluctuations of trap numbers are gaussian in nature.
These graphs provide support for such behavior.
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vious work in this area [1,7,8]. Nevertheless, they are not
necessarily our most accurate simulations for all ranges
of drop numbers. This is because the probability of vari-
ous events decreases at least like a power law of the sys-
tem size and therefore there is a tradeoff between increas-
ing the system size to decrease finite-size effects and the
number of updates required to get accurate simulations.

The appropriate variable for the drop size in our scal-
ing theory is a=In(D /2)/In(L). There are boundary
effects in the LL model are at most a very slowly increas-
ing function of L. Thus, if we use large lattice sizes, the
boundary effects become negligible (i.e., restricted to very
small values of a). For evaluation of small a values for
some of the power-law plots we simulated much larger
lattice sizes 10° <L < 10° Since the transient times be-
come prohibitively large, and the simulational time in-
creases with L, for these lattice sizes we discarded less
than L? transients (usually 2.5 X 10°) and updated the lat-
tice 10° times. In addition we used the previously de-
scribed trick to increase the number of events by a factor
of L.

For the drop number distribution the theory predicts a
piecewise linear G(a) with three different kinds of scal-
ing. Region I, 0<a <4, py (D /2) is expected to have an
inverse L dependence [Eq. (53)]. Figures 7(a)-7(d) are
log-log parts of p; (D /2) corresponding to four different
a values in this region. Figure 7(a), which corresponds to
a=1, has a slope of —1.017, which is in good agreement
with the theoretical prediction of a slope of —1. In fact,
if one restricts oneself to large lattice sizes
5X10*<L <3X10° a least-squares fit yields a slope of
—1.005. Figures 7(b) and 7(c) correspond to a values of
1 and 1, respectively. Both plots yield slopes of —1.004,
which are in an excellent agreement with the theoretical
prediction of —1. Figure 7(d) examines scaling at a=1
and yields a slope —1.049, about 5% higher than pre-
dicted. This is the first of the two theoretically predicted
phase transition points. Examining very large lattice
sizes increases the slope to about 1.13. A possible reason
for the larger discrepancy may be that one could be see-
ing the phase transition slightly before 1 due to finite-size
effects. This would then put us in the second region of
scaling, where the slope is decreasing. Figure 7(e) is the
corresponding log-log plot of p;(D/2) correspond-
ing to a=4. The theoretical prediction of G=—1
—(+—1)=—71=—1.1666 is reasonably close to the ob-
served numerical value of —1.134.

The third region of scaling starts at a=2. First, by a
combination of conservation of mass and steepest-descent
arguments one can show that the theoretical prediction
for G(%) is —%. Figure 7(f) gives us a numerical value of
—1.35, which is off by about 2%.

For the region a > %, the theory [Eq. (55)] predicts an
exponential decay in the probability of observing large
drop numbers. Log-log plots of the drop probability at
a=2 [Fig. 7(g)] and a=1 [Fig. 7(h)] seem to show a slope
which increases in magnitude with In(L). Note that a=1
corresponds to the largest possible avalanche size, i.e.,
D=2L.

Figure 8 compares theory and numerics for the entire
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G(a) curve. As we have shown before, there are small ~ (53)-(55). Equation (53) tells us the scaling of
discrepancies of up to 5% between the theory and simu-  p(D)~1/L for 0<a <. This is seen quite well in the
lations. plots in Figs. 7(a) and 7(b). There is some discrepancy in

We now look at finite-size plots of the avalanche data, the small a region which is due to a boundary effect.
attempting to check the more detailed predictions of Eqs. ~ Consistent with this interpretation, we have seen that the
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FIG. 7. Log-log plots of p, (D /2) for (a) @=} and (b) a=% (region I). The theoretical prediction for the slopes is — 1. The slopes
of the least-squares fit to the data points are —1.017 and — 1.005, respectively. Very large lattice sizes 50000 < L < 300000 (not
shown here) yield slopes of —1.005 and —1.002, respectively. Log-log plots of p; (D /2) for (c) a=§ and (d) a=% (region I). The
theoretical prediction for the slopes is —1. The slopes of the least-squares fit to the data points are —1.004 and — 1.049, respectively.
Very large lattice sizes 50000 <L <300000 (not shown here) yield slopes of —1.004 and —1.13, respectively. Log-log plots of
pr(D/2) for (&) a=7 and () @=% (region II). The theoretical prediction for the slopes is G(1)=—1=-—1.166 and
G(%)= —§= —1.333. The slopes of the least-squares fit to the data points are —1.135 and —1.351, respectively. Log-log plots of
pL(D/2) for (g) a=2 and (h) a=1 (region III). These plots [(g) and (h)] in contrast to the ones at lower & values show a faster-than-
power-law decay, consistent with the theory which predicts an exponential falloff.
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agreement in this region gets better as we go to larger lat-
tice sizes, where the boundary effect is negligible. Equa-
tion (54) tells us that eLxp(x)~const. Figure 9 shows
such a finite-size scaling plot. There does not appear to
be any satisfactory convergence to a horizontal plateau
with increasing L. Figure 10 shows the same plot, but
plotted against a. Since we estimate e~L ~!/3, this
means that we expect L*/*(D/2)p(D /2)~const. for
1 <a<Z. Although there is a clear signal of a change in
scaling behavior in the region around 1 and then again
around 2 %, it is clear that the function 1s not constant in
this region. Instead, as L gets larger, the function gets
steeper. Thus clearly we have not eliminated the L
dependence from these plots. To understand whether
these are finite-size effects or whether the theory has ad-
ditional scales that we have not taken into account, we
attempt to determine whether the deviations shown are
exponentially small corrections in L (permitted by the
theory) or rather power-law corrections in L, which then
would have to be incorporated in the theory. We do this
by first estimating the exponential function in region III
and then incorporating this correction on our data for re-
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FIG. 8. Entire G(a) plot. Assuming a multifractal scaling.
The sohd line is the theoretical prediction. The region beyond
a=1% needs careful interpretation. The reader is urged to look
at Flgs 7(e) and 7(f) carefully to judge the validity of the claim
that the exponents in this region are a result of fitting a power
law through a finite range of data which are in fact actually fall-
ing off (very slowly) faster than a power law. (b) was obtained
by using very large lattice sizes 10* <L <10’ to compute G(a)
for small a values and interpolating this curve with the function
shown in (a).
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FIG. 9. Finite-size scaling plot for region II, i.e,, 3 <a<*% 2
Shown are data from lattice sizes L =256,512,1024,5X 103,
10X 10%,15X 10%,25X 103,50 X 10%, each set averaged over 10'°
additions of sand. The abscissa is the avalanche size normalized
by the mean trap distance. The ordinate is the logarithm of
eLD /2, which the theory predicts should be a constant in the
region A<D /2<E.

gion II. To check the exponential fall off in region III
(1 <a<2),in Fig. 11 we plot the same function as in Fig.
10 but now against the variable x/L*3. The data are
consistent with an exponential falloff, though there is
some upturn in the tails for large L. From Fig. 11 we es—
timate the exponent of the exponential to be about %.
We now correct for this exponential factor in region II,

logio[(D/2) L¥?p(D/2))]

—T

o

FIG. 10. The same quantity as in Fig. 9, but now plotted
against a. The theory predicts a plateau in the region } <a < 3.
The curves in this region, however, get steeper as L increases.
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logol[(D/2) L*p(D/2)]

0 5 10 15 20
(D/2)/L%

FIG. 11. Finite-size scaling plot for region II, i.e., + <a < 2.
The ordinate is the logarithm of eLD /2. The theory predicts
that there should be an exponential falloff in this region, as seen
in the figure. However, notice that as one goes to larger lattice
sizes there is a small tendency for the curve to move upwards.
It is not known if this is an effect due to bad statistics (not
equilibrating the system long enough) or a systematic effect not
addressed by the theory.

and plot In[L%*3*(D /2)p(D /2)exp(aD /2L?*"*)] vs a
(where a = 3%) in Fig. 12. This figure shows considerable
improvement compared to Fig. 10. However, the fact
that the curves do not all collapse onto a single universal
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FIG. 12. Identical to Fig. 10, but now with an exponential
correction (determined from the slope in Fig. 11) incorporated.
Note the improvement of the expected plateau in the region
1<a<?. It is difficult to determine whether the observed
discrepancy between theory and experiment is a result of such
exponential corrections or a result of additional unknown
length scales.
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FIG. 13. Probability that the first trap will be at a distance y
from the abyss for the LL model with L =512.

curve in the region 4 <a <2 and that the function for the
larger lattice sizes systematically moves downwards in
this region implies that more corrections or prefactors
may need to be incorporated before satisfactory collapse
is obtained.

It is crucial to try and understand whether these
discrepancies are due to finite-size and boundary effects
in an inhomogeneous system or to the presence of other
length scales not considered by the theory. We have seen
in this section that the theory based on two length scales
seems to predict the scaling behavior of the LL model to
within a few percent. It is not clear whether we should
expect better, since we are dealing with an inhomogene-
ous system because of the nature of the (one open, one
closed) boundary conditions.

A quantity of interest is the probability distribution
Po(y), which is the probability that the first trap will be at
a distance y from the abyss. Figure 13 plots this quantity
for L =256. Note the presence of boundary effects on
both sides. As a check to some of the assumptions, par-
ticularly the assumption that neighboring sites of slope
(€;=€;1=1) occur (asymptotically) with probability 1,
one can compare the computed drop number distribution
with the drop number distribution derived from py(y) us-
ing Eq. (44). Figure 14 shows that there is fairly
good agreement between these quantities. The small
discrepancy may be caused by the fact that the probabili-
ty of €;=¢€; ;=1 is actually slightly less than I due to
the presence of traps.

In the next section we will present a detailed simula-
tional study of the PLL model and compare the results
with the theoretical predictions made here. The hope is
that the scaling of the data will be cleaner due to the
translational invariance of the model.

B. Simulations of the PLL model

The PLL model has the advantage of being translation-
ally invariant, but now we have a two parameter scaling.
In the LL model, € was a function of L. Here it is an in-
dependent conserved parameter whose value we can
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FIG. 14. Comparison between the actual drop number prob-
ability and that derived from the previous plot (LL model).

choose. L, on the other hand, is now an irrelevant vari-
able, which enters in the scaling theory as €. One must
be sure to choose a large enough lattice size so that the
system never “feels” its periodicity. The latter would
happen if the number of traps in the system gets small.
Thus one must choose L large enough so that one always
has many traps in the system. Naturally this value of L is
a function of both € and the number of time steps con-
sidered. In particular one has work with larger and
larger system sizes as €—0 and as t — .

Before examining the scaling of the PLL model let us
fix a few definitions. Since the flow of sand is clockwise,
we will call anything to the right of the site where sand
was just added as the forward direction and to the left the
backward direction. Then denote Prob(x) as the proba-
bility of the first trap being at a distance x behind a site
from which sand was just added.

Figure 15 shows a log-log plot of Prob(x) for a variety
of different system sizes all at a slope of 1.4. The lattice
sizes range from 256 to 15625. We see that all of the
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FIG. 15. Log-log plot of Prob(x) vs x for slope =1.4. L
ranges from 256 to 15 625.
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FIG. 16. Log-log plot of Prob(x) vs x for slope =1.44. L
ranges from 4096 to 25 000.

data except for L =256 and to a lesser degree L =512
collapse nicely. The lack of data collapse for L =256 can
be explained by noting that an € of 1.4 corresponds to a
system size of about 512 in the LL model. Thus L =256
is too small a lattice size and the system “‘feels” its finite-
ness. Figure 16 plots the same quantities as Fig. 15, but
now for €e=1.44. These plots confirm that we are using
large enough lattice sizes for our simulations and that the
minimum lattice size increases as €—0.

In order to make a direct comparison with the LL
model, we simulated the PLL model for different values
of L and their corresponding €, which were chosen to be
equal to the modal € that the LL model would have at
that value of L. [We remind the reader that, in the LL
model, e=(S—1.5)/2 is a fluctuating quantity since the
slope is not a conserved quantity. It is, however, a sharp-
ly peaked distribution whose modal values we have used
to define an € for the LL model.] For these sets of simu-
lations, we should thus be able to plot our data both

—1.8 F7 1T T 7T I L =)
= -2 -
(aY] L 4
~ L ]
i 55 [ 7
A ]
Qo N B
o
& - -
—= 2.4 —
ot - 4
2 [ 4

—2.6 —

Coo v by o

N
(9}
w
w
V)]

log,o(L)

FIG. 17. Log-log plot of Prob(x=VL) vs log,o(L), PLL
simulation using different L’s with €’s chosen to match the cor-
responding € in the LL model.
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FIG. 18. Identical to Fig. 17, but with Prob(x =€ 3/?) plot-
ted against —3.0logg€.

against In(L) or against In(€) and get the same numbers.
As a first check we plot log-log plots of the probability of
Prob(x =L!/?), which estimates drops of size a=0.5.
Figure 17 yields a slope of 0.59. If now we choose an €
based definition of « (i.e., using the relation L ~¢€~3), and
plot Prob(x =€~ 3/2), we find that the quality of the log-
log plot (Fig. 18) is not very good and the exponent is
0.55, i.e., about 10% off the value obtained from the L
based definition of a. The reason for this is that, in our
PLL models, we define € as (S—S,)/2, where S,=1.5
and S is the slope of the PLL model. However, to get an
explicit link between L and € in order to compare the
PLL and LL models, we have to worry about prefactors.
The simplest assumption to make is e= AL ~!/3, where
the prefactor A4 can be estimated in several ways. Two of
them are, from the modal total number of traps in the LL
model where to a very good approximation M;=2¢L,
and from the deviation of the modal slope of the LL mod-
el from 1.5, which to a good approximation goes as €.
The factor A4 can be estimated from the intercept of both
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FIG. 19. Identical to Fig. 18, but all values of € have been
multiplied by 1/4 =2.5.
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FIG. 20. Comparison between the G(a) for the PLL model
with €’s corresponding to the LL model, where the scaling was
done both against log,o(L) and [2.5log;o(€)] /2

these plots and is found to be about 0.4 with an error of
about 5%. Thus, when we compare a PLL simulation
with a LL simulation, we should multiply the value of €
used in our scaling plots by a factor of 1/4=2.5. Asa
check, we will show that this value of the prefactor also
turns out to be the best value that makes the PLL data
collapse for arbitrary values of L and €.

Now, putting in the above discussed prefactor ( 4) in
the definition of €, and plotting Prob[x =(2.5¢) 3/?] we
find, as shown in Fig. 19, that not only do we now have a
better log-log fit, but both the raw numbers and the ex-
ponent (0.59) are in agreement with those obtained from
the simulations of the LL model.

The above scaling plots showing power-law scaling are
similar to those observed in the LL model. We therefore
follow the same procedure of finding the prefactor func-
tion A(a) by considering log-log plots, at various values
of a and measuring the intercept. After eliminating this
prefactor function, we plot the G(a) curves correspond-
ing to both scaling with In(L) and (2.5¢) 3”2 in Fig. 20.
The excellent agreement over all ranges of a are an indi-
cation that the prefactor 1/4 =2.5 is indeed the correct

_1 —— | o
12 ]
—1.4 4

= - L.
[&] *‘16 — % ‘i
-1.8 - AAAA;
C AA:
2| :
C_1 1 1 1 1 1 1 | 1 1 1 | 1 L lA'C

0 0.2 0.4 0.6 0.8

[0
FIG. 21. G(a) for the PLL model with L =15625 with €’s

that have been varied systematically from 0.06 to 0.01.
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FIG. 22. Comparison between the G(a) for the PLL model
with €’s corresponding to the LL model, and for runs with arbi-
trary values of € with L =15 625.

choice.

If our scaling relations are correct, then we should be
able to collapse the PLL simulations for arbitrary e
(simulated on an appropriate large enough L), and not
just for simulations where € is chosen to correspond to
the LL model. We choose a moderately large lattice size
L =15625 and simulate the PLL model for a variety of €
values ranging from 0.06 to 0.01, which correspond to
slopes ranging from 1.38 to 1.48. Once again, we assume
power-law scaling, eliminate the prefactor function and
multiply € by the factor 4 =2.5. The result is a nice data
collapse as shown in Fig. 21.

In Fig. 22 we show a comparison between the G(a)
function from the set of runs with different L’s and their
corresponding €’s chosen from the LL model and those
from the runs where L was kept constant and € was
varied systematically. The nice agreement clearly shows
that we have captured the correct relation between € and
L. In Fig. 23 we compare this G(a) curve with the
theoretical prediction. Here we see that once again the
theory seems to have captured several of the essential
types of behavior; in some cases however, it is as much as
15% off in its values.
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FIG. 23. G(a) comparison between theory and PLL simula-
tions and LL simulations.
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VI. LIMITED TRAP MODELS

To get further insight into the scaling behavior of this
slope-dependent class of sandpile models, we consider a
variant, the LLL model. In this model, the rules of evo-
lution are similar to the LL model, however, traps are not
allowed to form. Thus any avalanche, once started, back-
propagates all the way to the wall. The main qualitative
result is that in this case the system becomes correlated
over its entire extent. This property is very different from
the LL model, where the traps introduce a correlation
length which is much shorter than the size of the system.
Nevertheless, the model turns out to have extremely in-
teresting properties that are strangely reminiscent of fluid
dynamical problems. Capturing the essentials of a
genuine transport problem, a diffusion equation appears
naturally in terms of the slope variable. We will show
that the LLL model can be solved in the mean-field ap-
proximation that is very similar to the standard closure
approximation in fluid mechanics.

Rules for the LLL model
Recall the definition of ¢;, which is given by
e=H, . ,—H,—1=8,—1. (72)

The time evolution of the model consists of randomly
choosing a site and adding a grain of sand, subject to the
following rules and constraints.

(R1) €; can only take on two values O or 1. The bound-
ary condition is given by €; . ;=1.

(R2) It is illegal to add on site i when €, =€, , ;=0.

(R3) If ¢,=0 and ¢, ;=1, then addition on site i will
result in €,=1 and €; ,;=0. There is no movement of
sand in this case and therefore no avalanches.

(R4) If €;=1 and ¢;,,=0, then addition on site i will
result in €;,=0 and €; . ;=1. A trivial avalanche of size 1
is created and a pair of sand grains fall into the abyss.

(R5) If €;,=€; =1, then addition on site i will result
in both the values being set to O as well as an avalanche of
size L—i+1.

These rules completely describe the model. The reader
is urged to check that these rules are identical to those of
the LL model, except that the creation of traps is not al-
lowed, so all backavalanches, once started, propagate all
the way back to the wall and then slide off into the abyss.

Recall that to generate a backavalanche in the LL
model one needed to add on a site with slope 2 and whose
left neighbor also had a local slope of 2. This generated a
backavalanche of a specified size which was determined
by the proximity of the nearest (left-hand) trap.

It is then apparent that backavalanches are caused by
the addition of a grain of sand on site i where
€,=€;1=1. The entire complexity of the avalanche
sizes for avalanches bigger than 2 depends on the proba-
bility of adding on a 11 pair. Once we can compute the
probability distribution of this quantity, it is trivial to
compute the drop number distribution.

Before beginning our formal manipulations, let us note
that rule (R2) makes this model significantly different
from the previous two models we have analyzed. In
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those cases the probability of choosing a site for addition
was uniformly L ~! and independent of the configuration
of the pile. In this model there is a new nonlinearity in
that the probability of an addition site, while uniform
over allowed sites, is now K ™! (configuration) with K, the
number of available sites, decidedly dependent upon the
momentary configuration. One of the consequences of
this property is that while the probability to see a drop of
size L +1—1i, i>1 is the probability of €, =€, , ; =1, it is
of course really that probability weighted by the probabil-
ity of selecting site i, which is now configuration depen-
dent:

Prob(d=L +1—1i)

=P €€ K (e 6 e,
{€}

i

(73)

where Pe .o -ooe, is the true invariant probability dis-
4

tribution for the above process where each addition is an
allowed process. K ! is a major nuisance, but intuitively
should be no more than a nuisance, since intuitively one
can inflate the number of trials of the addition process by
now selecting sites with probability L ~!, but simply do-
ing nothing if an illegal addition is selected. (Really noth-
ing, a grain is not even added.) It is important to make
this precise. (The intuition is really right only when the
process reaches its invariant distribution.) To do this, let
us write out the details of the Markov process more for-
mally. Denote by |€; - ¢€; - €, ) a given configuration
of the system. Define the diagonal operator K to be the
count of the available sites:

Kle, - € €.)
EK(G]"'Ei'”6L)|61”'6i”.6L)‘ (74)
Write the momentary distribution function of the
configurational probabilities as the vector p,
p=%pel‘..e,....qlel~--e,----eL), (75)
€

and define T as the transition operator that sends
l€; - -+ € -+ €, ) into the sum of all the states, each aris-
ing from the addition to an allowed site. Equipped with
the inner product,

<5’1"'6;"'611"61"'ei"'eL>:H55;yei- (76)
Then
(€, €€ |Tle, "€ e )=1, 77)
if a legal addition can produce |€}-- €. - -€; ). Our
process is now described by probability conservation as
p'=TK p . (78)

It is now easy to get rid of the K ~!. Namely, define a
transformed probability 7 which absorbs the K ~!:

K 'p=k lr, (79)

where k is the number that normalizes 7 to a probability
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kTl= 3 o

80
7 (61"‘6,-"‘€L)P€1 € € (80)

and depends upon the distribution p. Dynamically, by
(78) and (79) we have

k' =K \p'=K 'T(K " 'p)=k 'K 'Tx (81)
and

k" '=k7 '3 (e € e | KT\ Tr. (82)
le}
The 7 process is exactly equivalent to that of p. Notice
that the invariant m distribution 7' = satisfies

or
Kr=Tmw (84)

so that the need to invert K is eliminated for this purpose.
Next write

K=L1—F (85)

where 1 is the identity and F counts the forbidden addi-
tion sites. Then (84) becomes

=L YF+T)r. (86)

Equation (86) unearths the intuitive do-nothing pro-
cess, F and T always produce L new configurations, al-
though F produces exact copies of the original (the do-
nothing part), and each choice has uniform probability
L 7', Indeed, it can be verified that

a=L YF+T)r (87)

is Markov (i.e., probabilities are conserved), and is exact-
ly the intuitive inflated process. It is not equivalent to
(81) or (78): rather it has exactly the same invariant dis-
tribution as (81), which by (79) determines that of the
original process (78). It should be clear that (87) does not
easily relate to (78) out of stationarity. It is only when
the rate of abortive additions is constant that they can be
interconnected. Towards this end (79) is rearranged and
summed to produce

k=277€1‘..6i...€LK(61'--e,----EL). (88)
€

We have produced (86) for good reasons. First (86)

eliminates the inverse of K and so it is simple to write

down explicitly in an easy manipulable form. Second,

our desired drop distribution function (73) now becomes

trivial. Equation (88) projected on (e, € - €|
reads
K_I(EI €t eL)Pq“'Ei-'-eL=kVI7Te]'--e‘.“~eL
(89)

so that (1) is now

Prob(d=L+1—i)=k '3 7 ... €€ 11
(e}

€ TeL

=k e€41), (90)
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Thus, with k£ given by (88), it is precisely the 7 invariant
distribution of (86) that we wanted.

Finally, let us explicitly write down the operators
K,F,T. Define the projection operator Z; by

Zilel"'ei"'€L>:gi|61"'€i"'6L>: 91)

where €=1— € is the binary conjugate of €. Then
L—1
F= > 2727, . (92)
1
T projects out non-00 sites and then flips them:
L—1
T= 2 0i0i+1(1_ZiZi+l)+oL 5 (93)
1

where o; is the flip
O'i|€1"'€i"'€L>=|51"'€i"'eL)' (94)

Substituting in (86) and projecting upon (€, - - €; - - - € |
produces a master equation that expresses the fact that in
equilibrium, the change of probability of any
configuration is zero:

L—1

7T61"'6i"'6L+ E (l_glgi-f-l)ﬂ-e]"'e.-”EL
1

L—1
= (1—€€, 4 - +7
21’ P e Fey e

(95)

The left-hand side of the above equation expresses
the outflux of probability for the configuration
{€, € €}, while the right-hand side expresses the
influx. Our fundamental goal is to solve Eq. (95).

First, multiply Eq. (95) by €; and sum over {e}. We
must separate this into three calculations: (i) that for
1<j <L, (ii) the boundary term j =1, and (iii) the bound-
ary term j=L.

Consider case (i): Eq. (95) then gives

L<€f):(L_3)(€l‘)+<g,‘>+<€,‘e_-[+1)

+(&)—(&_g)+(e) . (96)
To simplify this equation, we use two identities
() +(g)=1 97)
and
(g€)=((1—¢)(1—¢))
=1+(ee€;)— () —(¢;) . (98)

Thus Eq. (96) can be written as
(€rr1) —2¢e )+ 1) =(ee,_ )+ (e 1€;)

i=2,...,L—1. (99)

Notice immediately that the left-hand side of Eq. (99) is
precisely a discrete diffusion, again exposing the similari-
ty of our process to a fluid situation.

Case (ii) reads

L{e))=(L—2)(€)+(g)—(55)+(¢) (100)
which, by using Egs. (97) and (98), is
(6, —(e) =€), (101)

a discrete zero derivative boundary condition on the free
end of the sandpile.
Finally, case (iii) reads

L e, Y=(L—2) e, ) +(&, ) —(g &)+ (e, ) (102)
or
1—-3Ce ) +Cep )=, _1€.) .

Notice that this equation can be derived from Eq. (99) by
substituting i =L, and using the boundary condition

(103)

€ 1=1. (104)

Now to obtain the drop number distribution. We have
not succeeded in a full solution of Eq. (95), and so here
offer a mean-field solution. Proceeding in the spirit of
Reynolds, we shall obtain the first term in an infinite
hierarchy and force closure in the zero correlation ap-
proximation:

(6,-6]'>:<6,‘)<6j>(1_6,'j)+<6i)6,']' . (105)
For simplicity of notation, define
Y,=(¢;) . (106)

We then obtain from Eq. (99) in the zero correlation [Eq.
(105)] approximation

2Y,
1—Y,

1

Y Y= (107)

or

2Y?
Y —2Y,+Y, = -y, - (108)
The form Eq. (108)—a discrete second derivative—
bears a diffusionlike resemblance to a fluid system, fur-
ther satisfying interest in this model. Similarly, applying
the zero correlation approximation to Egs. (101) and
(103) leads to

Y, -Y,=Y,Y,, (109)
¥,= 110)
21—y, (
together with the familiar boundary condition

A closed-form solution to Eq. (108) is unavailable. In
fact, Eq. (108) determines an area-preserving map, whose
fixed point has a degenerate eigenvector with just one ei-
genvalue, and requires a special analysis. This is done in
Appendix B.

We can, however, by a simple power counting argu-
ment, estimate the drop number D behavior. We shall
discuss only D =2



47 SANDPILES, AVALANCHES, AND THE STATISTICAL ...

pDZPrOb(D):k'1<€L+1,DEL+2~D) s (112)

where k is a normalization constant (see Appendix B).
Assuming a power-law solution (which we justify in
Appendix B), i.e.,

a
Y=—,

7 (113)

substituting in Eq. (108) gives, for its leading behavior, a
value of p =2. Thus

pp= const
D D4

, (114)

i.e., a power law with exponent 4. A more detailed
derivation is presented in Appendix B, showing that
const=3 and in particular is explicitly independent of L,
and so scale invariant. However, the reader should
remember that these equations and results are valid only
in the mean-field approximation.

Figures 24 and 25 show results from actual simulations
of the LLL model. Notice the successful prediction of a
power-law behavior. Least-squares fits to the slope yield
—3.31 and —3.59, respectively, as compared to —4 in
the mean-field approximation.

Let us formally consider the detailed probability distri-
bution of the configurations themselves. In our mean-
field approximation Eq. (105), this is elementary:

L
LrE S | (G (115)
i=1
where
fi(f):xis(l—'xi)lfe (116)

so that (¢;)=x;. Using Eq. (187) as adequate for the
(€; ), we then have
1L 3 k
(L) 1
T o~y @ vs—n

(117)
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FIG. 24. Results from the LLL model simulations confirming
the power-law decay in the probability of drop sizes with in-
creasing size. The power law is less than 4.
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FIG. 25. Results from the LLL model simulations confirming
the power-law decay in the probability of drop sizes with in-
creasing size. The power law is less than 4.

Notice that it ,~L, whereas 7{..., ~3%/(L)? so
that different configurations have probabilities more than
exponentially different. Next notice that we can write the

product form of Eq. (117) in a manner recursively relat-

ing w£ P to 7k
€0
ALY 3 (L)
L | (LA1—i)L+5—i) | e
=00 e, (118)

€ € €

By this derivation, we now see that half of all the
7L+ 1 probabilities are just the 7 probabilities, whereas
the other half are strongly suppressed by ~1/L2 Thus
for any large L only a Cantor set survives on which 7 at-
tains nonvanishing values. Also Eq. (117) informs us that
7 is log additive:

L
In7'H~ 3 €lno,_; ,
i=1

(119)

where the multipliers of the €; are quite variable for large
L.

VII. CONCLUSIONS

The local limited model, which at first sight seemed to
be rather simple and similar to the exactly solvable Abeli-
an sandpile models, turned out to be exceedingly difficult
to solve exactly. The sources of the difficulty were found
to be related to the lack of translational invariance and a
nontrivial distribution of trapping sites. To better under-
stand the effect of these features we studied two other
models each of which had only one of the above two
features. The first of which was the PLL model, which
has periodic boundary conditions and is translationally
invariant. Using this model we were able to develop a
scaling theory based on two diverging length scales. The
theoretical exponents differed from those computed from
simulations by up to 15%. The theory predicts that the
LL and PLL models have the same scaling properties in
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the thermodynamic limit. The agreement with simula-
tions in the LL model was somewhat better, the max-
imum error being about 5%. We have not been able to
satisfactorily resolve the question as to whether these
discrepancies between theory and simulation are due to
the presence of exponential corrections and finite-size
effects or whether they are due to the presence of addi-
tional length scales not taken into account by the theory.
We point out that the theory also neglects possible corre-
lations between the spin and trap variables which could
be another source of error.

The last model studied was a trapless version of the LL
model. This model turns out to have surprisingly rich
scaling behavior. While attempting an exact solution of
this model we encountered the classic closure problem
commonly encountered in fluid mechanics. We believe
that this is not a coincidence and that these models deal-
ing with the transport of sand genuinely capture many of
the features (and difficulties) of transport problems in
fluid mechanics.

The upshot of our calculations are that these models
exhibit long-range correlations. However, the probability
to see a large excursion from a typical drop number still
falls off exponentially, as one might expect from statisti-
cal mechanics.

We propose that the origin of the long-range correla-
tions is in the boundary conditions. By maintaining
reflecting and absorbing walls at the two ends of the
sandpiles one sets up an average flux of particles going
from the reflecting to the absorbing ends. A similar setup
can be achieved in hydrodynamics by taking a fluid and
maintaining it in a box whose two opposite walls have
different temperatures. Avoiding convection, one sets up
a heat flux going from the hotter to the colder wall. The
statistical mechanics of such simple nonequilibrium sta-
tionary states exhibit long-range correlations, which
disappear altogether if the boundary conditions are re-
laxed [11,12]. We therefore feel that many of the ob-
served features of self-organization found in these models
may be similar to those found in many other systems
such as fluids far from equilibrium.
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APPENDIX A

Since H; 2 i for recurrent configurations, it is natural to
define

X, =H;,—1 (A1)
so that
0=X;=i (A2)
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for all recurrent states, since AH <2 by (A1) is

GiEXi_Xi—lfl . (A3)

A particular configuration is then a sequence {X,},
i=1,...,L satisfying (A1)-(A3).

We want to determine N, the number of recurrent
states for a pile of length L. To do so, it is convenient
and informative to partition N; into N, x where

L

Np=23 Nk (A4)
0

with N; ¢ denoting the configurations for which the last

X, X; =K. It now follows from (A3) that

L
Newk= 2 Nowmos (AS)

M=K-—1
where M > K is the contribution from traps at i =L + 1.

We can now define limited trap depth models as L2, by
sharpening (A3) to

—r=<e¢=1, r=0,1,.... (A6)

The LLL model corresponds to » =0. For those models
(A5) becomes
k+r
Nivixk= 2 Nowos (A7)
k=1
where we include values of M > L by modifying N, g to
be

Ny, x=0, K<0,K>L . (A8)
We now proceed to sum (A7). First notice that
Npvix  Npsrk+1=Npxk—1—Npgsrv K>0 (A9)
Npi1,o7Ne+11= Ny - (A10)
Let us define some generating functions:
Ne(Z)= 3 zEN g=zK+0 ). (A11)
L=K
Notice by interchanging summations that
Niz= 3 Ne= 3 v, . (A12)
K=0 L=0

Equations (A9) and (A10) hold only for L =0, although
both are correct at L =0 with the definition

Nox=80k - (A13)
Multiplying (A10) by z%*! and summing over
L=0,..., w, paying attention to (A8) and using (A13),
produces

No—N,=1—zN,,, . (A14)
Similarly, for k >0, (A9) yields

ﬁK_ﬁK+IZZ(ﬁK—I—ﬁK+r+l)’ K>0. (A15)

Equation (A15) is linear of order »+2 at each fixed
value of z, and so its solution is
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r+2
Ne=3 a,(2)sKz) (A16)
i=1
where each s; satisfies
s(1—s)=z(1—s""2) . (A17)

Clearly one root of (Al/)is s(z)=1.
As z—0 there is certainly a root §(z) which goes to 0
as z:

lim 32 =1 |
z—0 Z

(A18)

It is easy to see that this root is unique. Moreover, other
than it and s =1, all other roots diverge as z—0, as the r
rth roots of 1/z. However, ﬁK starts with zX, and so

only § can contribute to Ny in (A16):
Ne=NgsX K>0. (A19)

[K =0 has been included, since (A15) at K =1 has N,
which must enter into the initial values that determine
the a; of (A16).] Substituting (A19) in (A 14) yields

(1—3+8"THN,=1,
which by (A17) is

No=%/z (A20)
and so
ﬁ,(=%§“1, K=0,...,0 , (A21)
while by (A13)
=% 1; . (A22)

Equations (A17), (A18), (A21), and (A22) fully deter-
mine N, and N g for all 7, and it is straightforward to
obtain the inverses of these transforms both to yield exact
combinatoric formulas for these quantities or, alterna-
tively, their asymptotic forms for L — . To do so, by
say (A12),

1 dz o
LT ZL+1N(Z) (A23)

for a sufficiently small contour around z =0, since N is
analytic there. The only impediment is the apparent need
to first solve (A17) for §(z). This, however, is unneces-
sary. Since$'(0)=1 and % is analytic at 0, all one needs to
do is change variables in (A23) from z to §, which as an

integration variable we will call s. One simply
differentiates (A 17) and writes by (A17)
ert2 . r+1
I _1(—=s""%)_ (A+s+ +s"h) ' (A24)
z(s) s (l1—s) s
After integrating by parts, one obtains
) d ) L+1
s
(L+1N,=7/—@Q ——— , (A25a)
L 27T¢(1—s)2 z(s)

and similarly from (A21)

3119

L+1 1 1 L

N x=7—Qds S¥ | —— , A25b

K1k g P St s (A25b)
where both contours are about s =0.

For r — o (the LL model), (A24) simplifies to

z(s)=s(1—s) (A26)

and all integrations are trivial, producing
- 1 2L
NL_CL+1’ CLEZ’__":‘I‘ [L ] (A27)

[where C(L) are commonly known as the Catalan num-
bers] and

_(K+1) [ZL—K]
Npk L+1) L ) (A28)
so that
N o=Np =Np_,. (A29)

Rather than obtain further exact formulas for finite 7,
we obtain asymptotic formulas by steepest descent. In

particular 1/z(s) has a minimum at s * satisfying
s"P14+r(1—r)]=2s—1 (s* real), (A30)

so that as L — o, the path s =s* +it is maximum at s*.
Defining

v=1/z(s*) (A31)

and
1 s* 1—s* 12
k=—= , (A32)
V2 (1—s*)? {l—r(rs"‘—l) ‘
we have
L+1
N ~k—z—~, L— (A33)
L (L+1)3/Z ®

with y increasing from 3 to 4 as r increases above 1 to .
Also, by simply comparing (A25) and (A26) we have

NL,K
Ny

~(1—s*)XK+1)s* L 50, K=0,...,»
(A34)

and the terms sum to 1 on K. In particular, all » > 1 have
the property that N , is a fixed (large, approaching  as
r— o) fraction of N; so that all possible configurations
are exponentially saturated by those of modest elevations
of H; above its recurrent value of L.

For r =1 special care is required since s*=1 in this
case (moving towards 1 as r increases), so that (A25) and
(A26) require an unintegration by parts and the results
are enhanced to

3+t Nio 3
NL =T —~— .
V37L Ny 2L
Notice now that L — oo, the end of the pile is highly
excited in most configurations, so that for kinematic
reasons alone, the pile is too “slippery” and cannot sus-

tain the large slopes that the r > 1 models do.
Finally, r=0 is trivial for the enumeration of

(A35)
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configurations. Obviously,

N,=25, Ny x= [L] ,

K (A36)

so that Ny (=1, and most of the pile is at its minimum
slope of 1 according to the mean field result, as opposed
to 2 of the LL model.

Smce (A24) is analytic in 7, (A24)-(A26) allow all
counting information to be naturally analytically contin-
ued in the trap depth limit r. Formulas (A30)-(A34) are
correct then for all »>1 and r=1 is transitional. It is
hard to see how the Markov process can fail to reflect
this critical transitional behavior of the underlying phase
space. It is conceivable that all » > 1 fall into the same
universality class, so that it is especially interesting to
solve the » =1 model, as well as analytically continuing to
the Markov process itself, so that r=1+¢€ would be
available.

APPENDIX B

The mean-field LLL equations are

2x} .
T2 X = =’ 1<i<L (B1)
1
xp41=1, (B2)
X)—X{=X X, . (B3)

Equations (B1) and (B3) determine that x; monotonically
increases with i, and it is easy to verify that x; —0 as
L — «. Thus we can replace (B1) and (B3) by differential
versions:

2 2
dx _ 2XT 42+ - (B4)
du? 1—x
and
dx 2
&x 12 (BS
du 1 *1 )
Equation (B4) has a first integral
i 2
ﬁ —xt=4x3—x D)+ (x4t —xhH+ -
or
d 2
x
T =4(x3—x})+xt+ -0 (B6)
Define
x=x,£. (B7)
Then
2
lié —4 | 2L {@—DHx2e+ (BS)
du 3

Calculating to O(x ) with § <<1/x,
B*=x,/3, (B9)

dE 3112 B10
du ~pB(&—1) (B10)

or

B(n—1)=if§"——L—d —k—if“’_é__d
1 1

2 (é- 1)1/2 2 i (§3_1)1/2 4
where (B11)
k=1 oo_dL
7 1 (§3__1)1/2
_T(3)
=%B(—é—,%)=\/ﬂ’ =1.214325... . (B12)
r2)
For 1 <&, <<1/x1 we have
_fw 1/2-—1f d§§_3/‘ 1+1§w
_VE(H LET ) (B13)

By (B11), since the first integral converges as £— c to
k, there must be some n(L)=a such that, as L — o

Bla—1)~k (B14)

By (B9), since a is known, so is x;. We shall shortly
determine a by asymptotic matching. Substituting (B14)
in (B11) and using (B13),

Bla—n)~—=(1+LE3+ ), (B15)
g,,~Ez(—-al:;)—2[1+;ﬁ6(a—n)6+ e, (B16)
which by (B9) is
3
x,gvﬁ 1+% 5| @t (B17)

Clearly a ~L for (B2) to be tenable. It is easy to verify
that

3
—Q (B18
(a—n)*—1 )
is an exact one parameter family of solutions to (Bl),
which can satisfy (B2) by choosing

a=L+3

X, =

(B19)

and has a leading perturbation behaving as the (a —n)®
form of (B17), although a different sixth-order polynomial
which vanishes at x =L +1.

For (B18) and (B17) to match, the a of (B19) is that of
(B14) and (B17) as well, and so by (B14)

3k?
(L+2)?

is an asymptotically exact result for (B1)—-(B3), while (B8)
is asymptotically correct for all large values of x,,.

We will now determine k ~!, relating  to p, and so find
an asymptotic exact result for Prob(d =D). Since

kp=Km,

X, ~ (B20)

(B21)

summing over Pe1
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k= lzlﬂfx"'fi"'fL(el ERW-A 6L|K|61 REFAE 'eL)
€
=(K),. (B22)

(From now on all expectation values are with respect
to 7.) Since

L
K= Z(I-Z,-Zi+1) ) (B23)
1
thus
L
1
which with €, =1—c¢; is
L
(K):2((6i>+<6i+1>_<ei€i+l>) (B25)
1

or
L
(K)=22<6i>+1-<61)—é(e,—eiﬂ) ) (B26)
1 1

Equation (B26) can be simplified using the first moment
formulas

<ei+1>~2(6i)+<6i—1>:(6i—lei>+<€i€i+l> , (B27)
() —(€;)=(e,6,) , (B28)
€ +1=1. (B29)
Summing (B21) from 2 to L and adding (B28) yields
L
2<615i+1):% ’ (B30)
1
so that
L
1

3121

Equation (B31) is exact. [Equations (B27)-(B29) when
integrated contain the necessary information needed to
establish that S§Prob(d =D)=1 and (d ) =1, the latter
verifying in the p process that the flux of addition equals
the flux of drops.] We now employ our mean field result
for (¢; ),

(e)~———— 1<<i<L+I (B32)
(L+3—i)y—1
which suffices to saturate the sum in (B31) as L — oo,
L
2
k~143 Y —=—
: 2, (L+3—i)—1
L
2
=143 [ S—
: Z, (i+2)72—1
1 1
=1+ - B33
2 321 i+1 i+3 (B33)
or
L+3 1
k~3+313— X <> (B34)
i=L+2 !
which implies
k~34+0(L7Y). (B35)

Since k~1=(K 1) P> the mean transition probability
out of the available sites is asymptotically 1, so that in
equilibrium relatively few sites are available for addition
and the 7 process relaxes exceedingly slowly. Since

Prob(d=D >1)=k €, 4 1—p€r+2-Dr (B36)

for small D, in mean field (no correlations) with (B32) and
(B35),
3

Prob(d=D)~ .
[(D+272—1][(D+1)*—1]

(B37)
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